You are here

A land speed bicycle which targets to break the record for fastest human powered vehicle

News International-French

7 Oct 2015

The ULV Team (established in 2013) sponsored by Rathbone Investment Management are a team of sixteen engineering students from the University of Liverpool who have designed and built the ARION1 land speed bicycle.

All team members are studying for a Masters of Mechanical Engineering at the University of Liverpool.

The ULV Team have been laying up the 2.8 meter long carbon fibre monocoupe shell of the ARION1 land speed bicycle at the National Composites Centre.

The time-lapse video below shows the team adding the top skins of carbon fibre reinforcement, followed by the final aramid skin before envelope bagging.

The bicycle uses Cytec pre-impregnated carbon fibre composites in conjunction with 3D|Core high-performance infusion core.

The design, engineering and materials selected for ARION1 focused on maximising the aerodynamic performance and minimising the overall weight of the vehicle. Structurally, it needs to handle the high force through the pedals driving the front wheel, support a single rider in a recumbent position and be stable in a straight line at speeds of over 80 mph. Its overall dimensions are approximately 2.8 metres long by 0.85 metres high and 0.5 metre wide. The rider or ‘pilot’ of the ARION1 velocipede sits almost flat with legs forward, completely enclosed inside a two part carbon fibre composite body shell; the top half is removable to enable rider access.

The ULV team selected high performance lightweight composite materials and technologies, including Scott Bader’s carbon fibre compatible Crestapol 1250LV acrylic laminating resin for the outer shell and the carbon fibre composite (CFRP) chassis frame, and Crestabond M1-20 primer-less structural adhesive to bond a variety of CFRP and metal parts used internally. Carbon fibre reinforcements, foam core materials and related design and processing technical support were provided by key sponsors of the student project including: Far-UK, Evonik, the UK National Composites Centre (NCC), as well as Scott Bader.

The use of carbon fibre with Crestapol high performance resin inside and out of the ARION1 was extensive to achieve the strength to weight ratio needed for this type of speed challenge vehicle. The aerodynamic, rigid, thin walled, outer body shell is a sandwich laminate construction, moulded using carbon fibre fabric, Crestapol 1250LV infusion resin and cut-to-size sections of Rohacell IG rigid closed-cell PMI foam core. The entire internal frame and where possible other components, such as the seat, the front end section and push rods, were also CFRP fabricated parts.

For the critical h-shaped high load bearing frame section that fits around the front wheel supporting the wheel strut, drive chain system and pedals, Far-UK recommended an infused part design using its Axontex carbon fibre (CF) braid and foam core system with Crestapol 1250 LV resin. This very lightweight, high modulus, infused sandwich laminate specification was finally chosen by the ULV Team in preference to an epoxy prepreg based option that had also been tested; the Axontex CF braid system provided the flexibility needed to wrap around the curved sections and to accurately conform around machined sections of Rohacell IG foam core. Dry lay-up and vacuum infusion at room temperature of the h-section was completed in just a few hours. The use of Crestapol 1250 LV enabled low temperature, rapid cure infusion of the part without any mould expansion. This was a critical factor for the team as the mould was also used as a jig to machine holes in the frame components, so maintaining mould dimensional accuracy was critical. The Crestapol infusion resin was specified as it is fully compatible with the CF braid and was simple to process at ambient temperature to provide the combination of high strength, stiffness and toughness needed for the bike frame, with no requirement for any post curing.

To minimise weight, Crestabond M1-20 was used extensively throughout the interior of ARION1 to structurally bond CFRP, metal and wood parts, as well as a number of Big Head metal fasteners and fixings of the team’s own design. This included CF-CF bonding of the front end section and the lay shaft mounts into the outer body shell, as well as bonding the anodised aluminium head tube and crankset mounts to the carbon fibre front end member.

The 2015 attempt by the UVL Team made UK record breaking history, with Ken Buckley setting a new human powered British land speed UK record of 75.03 mph piloting ARION1. However, the UVL Team were unable to match the Canadian Team AeroVelo, whose co-designer and rider, Todd Reichert, set a new IHPVA world record of a staggering 85.71 mph. Work on ARION2 is already underway by third year engineering students, for a ULV Team to compete again in 2016.

More information: