1063

Lightening the burden of high pressure for hydrogen-powered vehicles

Fuel cell electric vehicles (FCEV), powered by hydrogen, beat battery-powered cars in several dimensions. Fueled up in only a few minutes, they have a longer range and still feature all performance benefits of the electric powertrain. But the technology is still young and has to master some challenges. From a composites’ point of view, the significant amount of fibers needed for the hydrogen storage vessel, is a particular one. And it’s one that was taken into the focus of Cevotec engineers who designed a solution to save 20% of time, material and cost to build composites-based high-pressure vessels.

Lightening the burden of high pressure for hydrogen-powered vehicles
READING TIME

1 minute, 40 secondes

Lightening the burden of high pressure for hydrogen-powered vehicles

Thorsten Groene, CEO of Munich-based Fiber Patch Placement specialist Cevotec, says:

“The automotive industry has invested billions in fuel cell electric vehicles, but only very few cars are on our streets yet. One of the larger challenges is to efficiently and safely store hydrogen in the vehicle. There is working pressure of up to 700 bar in the tanks, which translate into approx. 10 kg of carbon fiber for 1 kg hydrogen storage – a very high ratio.” 

Manufacturers are interested in using less of the expensive fibers to reduce the vessel’s weight & cost.

Dr. Neven Majic, Executive VP of Cevotec says :

“Wrapping endless fibers around the liner is best for the cylindrical part. But filament winding at the domes means redundant material on the cylindrical part – which translates into excess weight and cost of the final product.”“The patches are designed to exactly cover the areas causing problems in filament winding.”

Cevotec’s solution is to apply carbon fiber patches in the dome areas, using the same material, just in patch form.

With patch reinforcements on the liner domes in a first step, the patched liners are passed over to the filament winding process, which subsequently needs less material and production time for the dome areas.

Patching of the domes is done by Cevotec’s SAMBA Series production systems.

Majic continues :

“The Fiber Patch Placement technology cuts patches from fiber material and places them individually on positions calculated by CAE software Artist Studio”

Groene adds :

“The investment in patch technology pays off from the first day of production”

One FPP system can reinforce vessels for several winding machines. Manufacturers can realize at least 20% material and cycle time savings.

By consequently applying Fiber Patch Placement technology to today’s composite manufacturing challenges, Cevotec supports the advancement of composites for a green mobility revolution. Applications areas for FPP also include many components in aerospace and new urban air mobility, all of which are currently produced manually. The Munich-based FPP specialist has conceptualized a range of production cell configurations to match the manufacturing process to the different applications. Material efficiency and cost savings of 20% – 60% are typical benefits for manufacturers switching from manual lay-up to Fiber Patch Placement technology.

More information www.cevotec.com